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Abstract-Unsteady and steady convection in a fluid-saturated, vertical and homogeneous porous enclosure 
has been studied numerically on the basis of a two-dimensional mathematical model. The buoyancy forces 
that induce the fluid motion are due to cooperative and constant fluxes of heat and mass on the vertical 
walls. For the steady state, an analytical solution, valid for stratified flow in slender enclosures, is presented. 
Scale analysis is applied to the two extreme cases of heat-driven and solute-driven natural convection. 
Comparisons between the fully numerical and analytical solutions are presented for 0.1 4 R, < 500, 
2 C Le < IO’, IO-’ < N < 10’ and I < A < IO, where &, Lp. N and A denote the solutal Rayleigh-Darcy 
number, Lewis number, mverse of buoyancy ratio and enclosure aspect ratio, respectively. The numerical 
results show that for any value of Le > I, there exists a minimum A below which the concentration field 
in the core region is rather uniform and above which it is linearly stratified in the vertical direction. For 
sufficiently high aspect ratios, the agreement between the numerical and analytical solutions is good. The 
results of the scale analysis agree well with approximations of the analytical solution in the heat-driven 
and solute-driven limits. The numerical results indicate that for Le > I the thermal layers at the top and 
the bottom of the enclosure are thinner than their solutal counterparts. In the boundary layer regime, and 
for sufficiently high A, the thicknesses of the vertical boundary layers of velocity, concentration and 

temperature are shown to be equal, regardless of the value of Le. 

1. INTRODUCTION 

THIS PAPER reports a theoretical study of transient 
and steady-state double diffusive natural convection 
in a fluid-saturated rectangular porous enclosure. 
Fluid motion is caused by buoyancy forces which, 
in turn, are due to the prescription of constant and 
cooperative gradients of temperature and con- 
centration on the vertical walls of the enclosure. The 
main purpose of this work is to present a steady-state 
analytical solution valid for a wide range of input 
parameter values. 

Natural convection due to spatial variations of fluid 
density is of fundamental importance in many natural 
and industrial problems. It can occur in free bodies of 
fluid as well as in porous media. The variation of 
fluid density can be due to nonuniform distribution 
of temperature and/or concentration of a dissolved 
substance. Some examples of heat and/or solute trans- 
fer by natural convection can be found in: thermal 
insulation engineering, solar power collectors, reactor 
cooling systems, underground disposal of wastes, 
spreading of pollutants, oceanography, geophysics, 
astrophysics, metallurgy and electrochemistry. Most 
of the reported surveys on natural convection deal 
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with cases in which the buoyancy forces are due to 
the variations of only one component, namely either 
temperature or solute concentration. The interest of 
research in the more complicated and neglected case 
of Aow due to variations of several components has, 
perhaps due to its importance in environmental and 
energy related problems, increased significantly dur- 
ing recent years. Such phenomena are usually referred 
to as thermohaline, double diffusive (adopted in this 
paper) or combined heat and mass transfer natural 
convection. Since the different components of a fluid, 
such as temperature and solute concentration, diffuse 
at widely different rates, double diffusive phenomena 
often exhibit special features, such as fingering and 
layering, that lack counterparts in single-component 
cases, see refs. [I] and [2]. In mathematical inves- 
tigations of double diffusive phenomena, the assump- 
tion that different components have the same diffus- 
ivity, i.e. Le = 1, relates them in such a way that 
suppresses any tendency of the mathematical model 
to reveal the exclusive features of double diffusive 
convection [2]. However, in most of the theoretical 
investigations available in the literature, a relatively 
large part of the reported results deal with the case of 
Le = 1. This is perhaps due to the computational 
economy, in numerical works, and the algebraic con- 
venience, in analytical works, that such an assumption 
leads to. 

Isosolutal, or isothermal, buoyancy-driven con- 
vection in rectangular porous enclosures subject to 



2480 F. ALAVYOON 

NOMENCLATURE 

A aspect ratio 
br buoyancy ratio, @Ac)/(aAr) 
c concentration 
c/ horizontal length scale 
D solute diffusivity 
.4 acceleration of gravity 
2/r enclosure width 
2H enclosure height 
k permeability 
9 vertical length scale 
LCJ Lewis number 
N inverse of buoyancy ratio, 1 /br 
Nu Nusselt number 
P pressure 
R Rayleigh-Darcy number 
S absolute value of vertical gradient 
S/r Sherwood number 
1 time 
7 temperature 
u velocity vector, (u, 21) 
r‘ velocity scale 
s horizontal coordinate 
J vertical coordinate. 

Greek symbols 

;5 
coefficient of thermal expansion 
coefficient of concentration expansion 

6 boundary layer thickness 
AC typical concentration variation 
AT typical temperature variation 

; 
porosity 
nondimensional concentration variation 

: 
thermal diffusivity 
horizontal gradient prescribed on the side 
wall 

Ll viscosity 
V horizontal profile 
P density 
B heat capacity ratio 

nondimensional temperature variation 
z stream function. 

Subscripts and superscripts 
c solutal 
T thermal 
0 initial. 

prescribed gradients of temperature, or concentration, 
on the side walls has been studied numerically and 
analytically by, among others, Bejan [3], Vasseur et 
al. [4, 51, and Alavyoon [6]. Based on similar math- 
ematical procedures, analytical boundary layer solu- 
tions were derived and presented for steady con- 
vection in a slender cavity, [4-61. The analytical 
solutions were verified by comparison with fully 
numerical solutions. The main conclusions reported 
in [4-61 are that, in the high Rayleigh-Darcy regime of 
flow, (i) the core region is motionless, (ii) the boundary 
layers have constant thicknesses, and (iii) the density 
field is linearly stratified in the vertical direction. In 
two reports, Bark et al. [7] and Alavyoon et al. [8], 
presented simplified perturbation models for time- 
dependent natural convection in fluid-filled slender 
cavities. These models were verified by both fully 
numerical calculations and electrochemical exper- 
iments. The time-dependent perturbation solutions 
presented in refs. [7,8] were extended to porous media 
by Alavyoon [6]. 

Theoretical investigations of double diffusive natu- 
ral convection in porous media have been reported 
for a variety of geometrical configurations (external or 
internal flows) and boundary conditions (prescribed 
values of the components or their derivatives on solid 
boundaries), see e.g. refs. [g-17]. Bejan and Khair 
[9] reported an analytical investigation of double 
diffusive natural convection near a vertical surface 
immersed in an infinite porous medium. Constant 
temperature and concentration values were prescribed 

on the vertical surface. Scale analysis was applied 
to the two extreme cases of heat-driven and solute- 
driven natural convection in order to derive the 
order of magnitude of the properties of interest. A 
boundary layer similarity solution was presented for 
-5 < br < 4, and 1 < Le < 100, excluding the inter- 
val - I < br < 0 for Le = 1. The similarity solution 
supported the results of the scale analysis, see ref. [9]. 
In a more recent paper, Lai and Kulacki [lo] re- 
examined the case studied by Bejan and Khair [9]. 
They [IO] presented similarity solutions for the two 
cases of constant wall temperature and concentration, 
and constant wall heat and mass flux. Their results 
gave support to the scale analysis of Bejan and Khair 
[9]. Contrary to ref. [9], Lai and Kulacki [IO] found 
a similarity solution for the case of - 1 < br < 0 and 
Le = I. Instead, they [lo] argued that such solutions 
are impossible in the range of -I < br. References 
[I l-171 represent a few of the theoretical papers pub- 
lished during the eighties and the early nineties on 
internal double diffusive natural convection in rec- 
tangular porous media, which also is the subject of 
the present paper. Trevisan and Bejan [II], used 
numerical methods to study heat and mass transfer in 
a square cavity with isolated top and bottom and 
constant temperature and concentration on the ver- 
tical walls. They [I I] also applied scale analysis to 
the heat-driven and solute-driven limits in order to, 
among other things, estimate the overall heat and 
mass transfer rates. The results of their scale analysis 
agreed with those of the fully numerical solution. In 
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ref. [I 21, Trevisan and Bejan presented numerical and 
analytical results for a fluid-saturated rectangular 
porous enclosure subject to constant gradients of tem- 
perature and solute concentration at the vertical walls. 
Based on the results of an earlier work [3], the authors 
[ 121 developed an analytical boundary layer solution 
to the problem. However, due to an inappropriate 
choice of core condition (matching the boundary layer 
solution to the core region solution), their analytical 
solution proved to be valid only for the case of Le = I. 
Instead, for Le > I, an analytical similarity solution 
was presented in the heat-driven limit [l2]. The 
present paper, among other things, re-examines the 
first part of ref. [l2]. Trevisan and Bejan [13] studied 
high Rayleigh-Darcy number, heat-driven double 
diffusive convection in a rectangular cell heated from 
below. The values of temperature and concentration 
were prescribed on the horizontal walls. The flow 
was driven by a destabilizing vertical gradient of tem- 
perature. Numerical experiments and scale analysis 
arguments were used to reveal the relationship 
between the temperature and concentration fields. The 
agreement between the two methods was good. An 
interesting result reported in ref. [ 131 was the appear- 
ance of different temperature scales in the vertical and 
horizontal directions. Zhang and Bejan [I41 studied 
time-dependent buoyancy-driven spreading of heat 
and chemical species in a rectangular fluid-saturated 
porous medium bounded by isolated walls. The flow 
started due to an initially nonuniform distribution 
of temperature and solute concentration. Numerical 
methods and scale analysis were used, and for the 
case of infinitely shallow enclosure, a closed form 
analytical solution was proposed [l4]. Mehta and 
Nandakumar [I51 numerically studied the effect of 
nonuniform permeability on heat and mass transfer 
in a square porous cavity. The vertical walls of the 
cavity were subject to constant heat and solute flux 
and the horizontal walls were isolated. They [I51 
found that, due to vigorous convection in regions with 
high permeability, the overall Sherwood and Nusselt 
numbers can differ significantly from cases in which 
the permeability of the enclosure is uniform. In a 
comprehensive review article [ 161, Trevisan and Bejan 
summarized available studies on double diffusive con- 
vection. In a recently published paper [I 7], Rosenberg 
and Spera numerically investigated double diffusive 
natural convection in a square porous cavity heated 
from below and subject to a variety of solutal boun- 
dary and initial conditions. Results for steady state 
and transient cases were reported. Regression analysis 
was applied to derive parametric relationships for Nu 
and S/z. In the case where the cavity was salted from 
below, good agreement was found with the results of 
ref. [13]. 

To the knowledge of the present author, only a 
few experimental studies of double diffusive natural 
convection in porous media are available in the litera- 
ture. Griffiths [18] observed a thin diffusive interface 
in a Hele Shaw cell and in a laboratory porous 

medium, and thus concluded that layered double 
diffusive convection can occur in porous media. 
Murray and Chen [I91 made an experimental study 
of the onset of double diffusive convection in a finite 
box of porous medium. They [ 191 found good agree- 
ment between the critical Rayleigh-Darcy number of 
the experiments and that of a modified version of 
Nield’s linear theory [20]. 

2. PROBLEM STATEMENT 

A two-dimensional mathematical model is used 
here for investigating momentum, heat and mass 
transport phenomena in a vertical, slender and porous 
enclosure. For simplicity. all material parameters are 
treated as constant and uniform. The geometry of the 
enclosure and its dimensions, along with the boundary 
conditions, are given in Fig. I (a). The cavity consists 
of a fluid-saturated porous medium enclosed by solid 
and impermeable walls. The fluid is initially homo- 
geneous and at rest. The top and bottom walls are 
isolated. The gradients of temperature and solute con- 
centration are prescribed on the vertical walls. It is 
assumed that these gradients are constant and 
uniform. Upon starting the process, horizontal gra- 
dients of temperature and concentration appear in the 
fluid adjacent to the vertical walls, thus giving rise to 
buoyancy forces that are the cause of natural con- 
vective motion in this study. The equation for con- 
servation of momentum in the Darcy regime and with 
Boussinesq approximation [I] 

;u = -VP--pg[/l(c-cc,)--a(T-To)]?, (1) 
and the equation of continuity 

v-u = 0 (2) 

are used here to model the fluid motion. 
The equations for the conservation of con- 

centration and heat, in the absence of Soret and 
Dufour diffusion, read [I] 

E~+U.vC=DV2C (3) 

where 

The boundary conditions for equations (l)-(4) are 

ac 0 aT -=0 and u=Oat]y]=H (5) s= 1 ay 
ac _ I\14 aT 
ax= ’ 22’ 

AiT) and u = 0 at 1x1 = h 

(6) 
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Control volume V 

a b 

FIG. 1. The geometry of the porous enclosure. (a) Dimensions and thermal and solutal boundary conditions, 
(b) nondimensional form and arbitrary control volume. 

where A”’ > 0. Acr’ is positive in the cooperating case, 
and negative in the opposing case. Both A”’ and j\(r) 
are assumed to be positive and known constants here. 

The initial conditions from which the process is 
started read 

(’ = co, T=T, and u=Oatt=O. (7) 

The dimensionless variables and parameters 

DI hu 
1-p u*=jp 

c--co 
/j- /\l’)jr ’ 

T-T, 
q = ,,‘T’h ’ 

R = kg/?A”‘h’ UA(T’ 
c VD 

and N=- 
DA”“ 

are used to make (l)-(7) nondimensional. Hence- 
forth, the asterisks that denote some of the dimen- 
sionless quantities are omitted. Upon introducing 
the dimensionless quantities into (l)-(7), the non- 
dimensional version of the problem to be considered 
reads 

II = -VP-R,(O- Nq)t,, 

v-u=0 

(8) 

(9) 

e; +ll.vo = v*o (10) 

IYI = A (12) 
a0 

0 acp -=0 and v=Oat &=' ay 
a0 
-= -1 
ax *=I and u=Oa 

l ax ItIxl = 1 (13) 

B= 0, cp = 0 and u = Oat f  = 0. (14) 

In order to get rid of the pressure gradient term, 
one can take the curl of equation (8) and introduce 
the stream function II/, defined by 

UC g, -g). 

Thus, upon the introduction of the stream function, 
equations (8) and (9) get replaced by 

V’$ = R&Ng). 

The boundary and initial conditions for the stream 
function are 

$ = 0 at 1x1 = I and lyl = A (16) 

and 

$=Oatr=O. (17) 

Equation (15) is used only in the numerical solution 
to the problem. 

3. NUMERICAL METHOD 

The equations (IO), (11) and (15) and the boundary 
and initial conditions (12)-( 14), (16) and (17) are 
discretized on a rectangular mesh, uniform in each 
coordinate direction. There are no grid points on the 
physical boundaries (Iyl = A and 1x1 = 1). Instead, 
the mesh is chosen such that the first (or the last) grid 
points in each coordinate direction are half a length 
step after (or before) each physical boundary. The 
temporal and spatial derivatives are approximated by 
first- and second-order discretizations, respectively. 
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For simplicity, the nonlinear terms in equations (10) 
and (11) are evaluated by using the already known 
results from the last time step. Thus, three decoupled 
and linear systems of algebraic equations are derived. 
Each of these systems has a symmetric positive- 
definite band-matrix with constant coefficients. These 
algebraic systems are then solved by the conjugate 
gradient method [21]. The length steps, in each direc- 
tion, and the time steps are chosen partly by numerical 
experiments and partly by the guidance provided by 
the analytical results of Section 5, according to which. 
e.g., for given values of R,, Le and N, the thickness 
of the vertical boundary layer is 0( I /a). At each new 
time step, the solution is deemed converged when 

where E denotes any of the three quantities 0, cp or $. 
n and k denote the number of time steps and the 
number of iterations at each time step, respectively. 
The solution is assumed to have reached steady state 
as soon as the criterion 

where IO-’ < e < IO-‘*, is satisfied. 
The numerical method outlined here is chosen more 

for its simplicity than its efficiency. Partly due to the 
linearization of the nonlinear terms and partly due to 
the uniformity of the grid, this method is not suitable 
for cases in which R, and/or RT > 103. However, for 
the main purpose of this work, which is to verify the 
validity of the analytical solution discussed in Section 
5, the numerical method adopted here proves to be 
fully sufficient. An already available Fortran code, 
used previously for the computations in ref. [6], is 
further developed and improved to conform to the 
numerical method outlined in this section. The code 
is then verified by an analytical solution valid for small 
values of time, see Section 4. The program was run on 
a Titan 750 super workstation. The numerical results 
presented here (typically 5000 mesh points and 
At - IO-j), depending on the aspect ratio and values 
of input parameters, took approximately 3 - 5 CPU 
hours each. 

4. ANALYTICAL SOLUTION FOR SMALL 

VALUES OF TIME 

For sufficiently small values of time and large aspect 
ratios, one can assume that the solution to the prob- 
lem has the following form 

u = u(x, t,cy, 0 = 0(x, 1) cp = cp(x, t) 

and P =f(t)y. (18) 

The expressions in (18) imply that, for sufficiently 
small values of t, the vertical gradients of con- 
centration and temperature are negligible, the end 

effects due to the presence of the horizontal walls at 
the top and bottom are confined to small regions 
there and the transport of solute and heat is diffusion- 
dominated. Introducing (I 8) into the equations (8)- 
(1 I) gives 

~1 = -f - R, (0 - NV) (19) 

do a’0 
E&==$ (20) 

Equations (20) and (21). together with boundary con- 
ditions (13) can be solved by, e.g., the method of 
Laplace transforms. The solutions for concentration 
and temperature then read 

0 = -s- 8 c L (-I)“” 

n2,,=,(2n 

x sin [(2n+ l)i.y]exp (- -lilt) (22) 

x sin[(2n+l)gr]exp(-sn’i). (23) 

Once 0 and cp are known, one can determine the func- 
tionf(t) in (19) by imposing the integral condition 

(24) 

which states that the fluid volume is conserved. This 
condition is a consequence of the assumption that the 
fluid is Boussinesq-incompressible, see equation (9), 
and is therefore valid for all values of time and along 
any arbitrary horizontal cross-section. Integrating 
(19) with Q and cp given by (22) and (23), and invoking 
condition (24) gives f(f) = 0. Thus, the small-time 
solution to the velocity field is given by (l9), (22) and 
(23) with f = 0. As mentioned earlier, the analytical 
solution presented in this section is used only as a tool 
for verifying the correctness of the numerical code 
which is developed for the fully numerical solution. 

5. ANALYTICAL SOLUTION FOR THE STEADY 
STATE 

5. I. General case 
For the steady-state case, it is possible to find an 

analytical solution towards which the transient solu- 
tion approaches asymptotically. Such a solution is 
valid for enclosures with relatively high aspect ratios, 
and in regions where end effects due to the presence 
of horizontal walls are negligible. In this subsection, 
the detailed procedure of deriving the analytical solu- 
tion to the steady-state problem, valid for a rather 
large domain of parameter values, is outlined. 
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The numerical solution to the full problem indicates 
that after an initial and rather short period of time, 
during which a weak and stable stratification of the 
temperature and concentration fields is set up, the 
momentum, heat and mass transfer phenomena in the 
enclosure can be characterized by a slow evolution 
towards a steady state at which the temperature and 
concentration fields become linearly and stably strati- 
fied in the vertical direction. Moreover, for sufficiently 
high aspect ratios, and outside the end regions, the 
velocity vector proves to be predominantly vertical 
and independent of the vertical coordinate j’. Guided 
by these observations, the proposed form of the 
steady-state analytical solution reads 

u = v(.+?, (25) 

0 = - s,.y+ 3,-(s) (26) 

cp = s,y + 3T(X) (27) 

where S,. > 0 and S, > 0 are unknown constants and 
c’(s), gC(s) and 3,-(x) are unknown functions to be 
determined. One also needs an assumption for the 
pressure gradient term. Introducing (25)-(27) into 
equation (8) and rearranging the terms gives 

v(s)P,. = - (VP- R,.(S,+ NS,)yP,.J 

which in turn renders the assumption 

1- VP = jn,.+R,(S,.+NS,)~~,e., (28) 

necessary for the pressure gradient. The quantity 
denoted by II!. is an unknown constant which is deter- 
mined later. The solution form assumed in (25)-(28) 
is a generalization, and application to double diffusive 
phenomena, of a model proposed by Prandtl [22] for 
mountain winds in stratified air. Trevisan and Bejan 
tried the aforementioned form of solution for double 
diffusive natural convection in both a Newtonian fluid 
[23] and a fluid-saturated porous medium [ 121. How- 
ever, in both cases, due to reasons discussed later, 
their solution proved to be valid only for the case of 
Le = I while, as the present analysis shows, it could 
in principle have been valid for any value of Le. 

Substitution of (25)-(28) in (8)-( 13), with a/at z 0, 
yields the equations 

v(x) = -I-I,. - R,9,(x) + R,N&(x) (2% 
7 

-v(x)S, = g$ 

d’9, 
v(x)& = Lep 

and the boundary conditions 

(30) 

for the concentration profile, and, in the cooperating 
case, 

d9, 
-= +lats= &I 
dx 

for the temperature profile. By solving equations (29)- 
(31) subject to the boundary conditions (32) and (33), 
one can determine the unknown functions cl(x), LIC(x) 
and Q&Y) in terms of two integration constants and 
S,., S, and II,.. In order to determine these five 
constants, five integral conditions have to be imposed 
on the solution. These conditions are briefly discussed 
below. 

The velocity profile cl(s) should satisfy the condition 
of conservation of fluid volume (24) which is already 
mentioned in Section 4. 

The total amount of solute has to be conserved, i.e. 

+I 

s I 

+ .A 
I: 0dyd.r = 

I -2, 

which in view of (I 3) and (26) yields 

s 

+I 
3,.(x) ds = 0. (34) 

-I 

Similarly, one can show that 

I 

fl 
L&-(x) ds = 0. (35) 

-I 

In the problem studied here, since the prescribed 
gradients of temperature and concentration on both 
of the vertical walls are exactly the same, the integral 
conditions (24) (34) and (35) become equivalent to 
assuming that the functions v(x), 9,.(x) and Q&Y) are 
centrosymmetric. 

For the steady-state case equation (IO) can be 
rewritten as 

v~(uo-vo) = 0 

which in turn, after integrating throughout the control 
volume V shown in Fig. I(b), applying Gauss’ 
theorem and invoking the boundary conditions (12) 
and (I 3), can be reduced to 

I 

+I 
(uO-VO).C!dx = 0. (36) 

-I 

The physical interpretation of the integral condition 
(36) is that, at steady state, the net diffusive and con- 
vective transports of solute through any horizontal 
cross-section of the cavity balance each other exactly, 
see refs. [3, 61. Inserting (25) and (26) into (36), and 
invoking (24), gives 

s 

fl 
v9,dx+2SC = 0. (37) 

-I 

Similarly, one can show that 
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I 
+I 

1.3, ds-2LeS,- = 0. (38) 
-I 

zontal gradient of concentration in the bulk fluid. The 
appearance of horizontal temperature gradients in the 
bulk fluid also can bc motivated by similar arguments. 

The physical interpretation of (38) is that, at steady Now it remains to determine the values of .S, and S,-. 
state, the net diffusive and convective transports of Introducing theexpressions (39)-(41) into the integral 
enthalpy through any horizontal cross-section of the conditions (37) and (38). leads to the nonlinear and 
cavity are in exact balance. see ref. [3]. coupled system of algebraic equations 

The value of the constant IT,. can be readily deter- 
mined by integrating the expression (29) across a hori- 
zontal cross-section, which, in view of the integral 
conditions (24). (34) and (35), gives II,. = 0. 

The linear system of second-order coupled differ- 
ential equations (29)-(31), subject to the boundary 
conditions (32) and (33) and the integral conditions 
(24) (34). (35), (37) and (38) define a simple math- 
ematical problem that can be solved easily. It proves 
expedient to introduce the notations Q = J(R,S, + 
RJ,) and B = (NR,.S, - R,S,)/(R,S, + R,&). where 
RT = R,(N/Le) is the thermal Rayleigh-Darcy 
number. In terms of the yet unknown constants 0, B, 
S,. and ST, the exact solution to the problem then reads 

+B(l+B)(l-~n~)=O (42) 

(43) 

from which .S, and S,- can be dctermincd for given 
values of R,. Lc and N. Obviously, for the general 
case. the equation system defined by (42) and (43) has 
to be solved by numerical methods. c.g. by Newton- 
Raphson’s method. However. this is by far a much 
easier task than numerically solving the full set of the 
nonlinear and coupled partial differential equations 
that are used to model momentum, mass and heat 
conservation in this problem. For the two extreme 
cases of boundary layer type solute-driven and heat- 
driven natural convection, it is possible to derive 
approximate solutions lo (42) and (43). These solu- 
tions are given in Subsections 5.2.3 and 5.2.4 and 
then supported by pure scale analysis arguments in 
Section 6. 

C’(S) = 
Q(lfB) 

S, cash (Q) 
smh (Rs) (39) 

I+B 
3,(y) z - -~- 

R cash (Q) 
sinh (Qs) + Bx (40) 

The integral conditions (24). (34) and (35) have been 
employed in deriving the solution given by (39)-(41). 
The linear terms in (40) and (41), which are due to 
the different values of solutal and thermal diffusivities 
(LP # l), see. Subsection 5.2.2, are of utmost import- 
ance in the present analysis. It is indeed possible to 
motivate the presence of these linear terms by purely 
physical arguments. To begin with, consider the case 
of isothermal buoyancy-driven convection due to pre- 
scribed gradients of concentration, see Fig. 2. The 
velocity and concentration profiles in such a case 
adjust themselves to the needs of solute flux dictated 
by these gradients. Now, suppose that a temperature 
gradient is also imposed on the side-walls. I f  the pre- 
scribed temperature and concentration gradients aug- 
ment each other, the amplitude of fluid velocity will 
increase at each point due to the increase of the buoy- 
ancy forces that drive the whole motion, Fig. 2(a). As 
a result, the convective transport of solute will be 
enhanced, see Fig. 2(b). Compared to the isothermal 
case, a larger amount of solute will thus be removed 
from the high-concentration wall (x = - I) and sup- 
plied to the low-concentration wall (s = + I). Since 
the mass flux conditions at these walls are unaltered, 
the thermally enhanced convective transport of solute 
builds up a solute surplus region near the low-con- 
centration wall and a corresponding solute deficit 
region near the high-concentration wall. This in turn 
leads to a backward diffusion of solute from the sur- 
plus to the deficit region, hence giving rise to a hori- 

Once the solution is fully determined, one can com- 
pute the overall Sherwood (S/r) and Nusselt (Nn) 
numbers, which are usually of intcrcst in engineering 
applications. In terms of the already known param- 
eters Le, S,.. S,, B and R, one can show that 

Sh = +/I 
2A 

I 

s 5 .~ .., 
~(O),,-,-(O).,=+,Jd?, 

2 I 
=Z<(-I)-9,.(+l) = l+B (4) 

- tanh (0) -B 

and 

2A 
NM = 

1 

s 

+ .A 
z -,, ((cp).,=+,-(cp),=-,)d?, 

2 ST I ST -’ 

Y&.(+1)-,9T(-l)= LeS,zi+I-~ 1 
(45) 

from which S/I and Nu can be determined. The first 
and the last expressions on the right-hand sides 01 
(44) and (45) are used for evaluating the fully numerical 
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1 Velocity increase due to imposed 
gradient of temperature. 

/ 

1 Solute deficit due to enhanced mass transport. 
2 Solute surplus due to enhanced mass transport 

0.00 

a 

b 

-1.0 -0.5 0.0 0.5 1.0 

X 

FIG. 2. Tentative profiles of concentration and velocity before (thick line) and after (thin line) imposing a 
cooperative temperature gradient. (a) Velocity profiles, (b) concentration profiles. 

and the analytical solutions, respectively. Note that 
according to (44) and (45) the analytical expressions 
for Sh and Nu do not depend on the height of the 
enclosure. This can be attributed to the fact that in 
the domain of validity of the analytical solution, i.e. 
for slender enclosures, the wall to wall concentration 
and temperature differences at any arbitrary hori- 
zontal cross-section are independent of the vertical 
position of the cross-section. 

5.2. Special cases 
In deriving the analytical solution, given by (25)- 

(27) and (39)-(43), no restrictions are imposed on the 
values of Le, R, and N, and therefore the solution 
is, in principle, valid for any values of these input 
parameters. This is of course true as long as the aspect 
ratio of the cell is high enough for the end effects to 
be confined to small regions near the top and the 
bottom of the enclosure. In the next subsections, the 
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interesting and often encountered case of boundary 
layer solution will be discussed in some detail. There- 
after, in Subsection 52.2, the case of Le = 1 will be 
treated in order to shed some light on the discrepancy 
between the present analysis and that by Trevisan and 
Bejan [ 121. Subsections 5.2.3 and 5.2.4 are concerned 
with two extreme cases, namely solute-driven and 
heat-driven boundary layer type flows. 

5.2.‘. Boundary layer approximation. It is possible 
to further simplify the analytical solution by assuming 
that ezn >> 1 (0 > 3). This occurs when, e.g., R, >> 1, 
and from a physical point of view, it means that the 
velocity and concentration fields have boundary layer 
character. Whether or not the temperature field too 
has boundary layer character depends on the values 
of Nand Le. Invoking the aforementioned simplifying 
assumption, the analytical solution presented in the 
foregoing section can be reduced to 

*(‘+B) -ncI*r, u(x) = T Se 
c 

(46) 

‘+B 
g,(x) = +_ -,e-“(‘i”+B,K. (47) 

The upper and lower signs are valid in the x - - 1 
and .Y - + 1 boundary layers, respectively. The 
expressions (46) and (47) show that the inverse of the 
parameter Q can be interpreted as a measure of the 
thickness of the vertical buoyancy layers attached to 
the vertical side-walls. Moreover, they show that the 
hydrodynamic and concentration boundary layer 
thicknesses are equal. This can be attributed to the 
stable density stratification of the bulk fluid, which 
hampers the motion there and compels the hydro- 
dynamic boundary layer to retreat towards the ver- 
tical walls and thus to confine itself to regions of high 
horizontal gradients of density. In cases where the 
temperature field too has boundary layer character, 
its thickness will, according to (41), be equal to that 
of the hydrodynamic and concentration boundary 
layers. This occurs irrespective of how large or small 
Lc is. 

It is instructive to rewrite equation (47) as 

(48) 

in which 5 is the boundary layer coordinate defined 
by 5 = Q(1 +x). Expression (48) shows that when 5 
becomes large, i.e. on approaching the outer limit of 
the boundary layer, the function denoted by 0, and 
thereby even 9,, becomes a straight line. In the formal 
language of mathematics, this is equivalent to the 
relationship 

T-j. [tic] x Bx. (4% 

Similarly, one can show that 

In ref. [ 121, the authors assumed from the very begin- 
ning that v(x), S,(x) and L&.(x) were boundary layer 
functions and they chose to seek a solution that ful- 
filled the core condition 

In the course of their analysis, they concluded that 
their solution was valid for the case of Le = 1 only. 
This conclusion is in full agreement with the results 
of the present analysis which show that the right-hand 
sides of (49) and (50) become identically equal to zero 
if and only if Le = I. 

5.2.2. The case of Le = 1. Assuming that the ther- 
mal and solutal diffusivities are exactly equal, i.e. 
Le = I, equation (43) reduces to the simple form of 
S, = S,.. This in turn gives B = 0 and (1 + N)R& = 
Le(R,S,.+R,SS,), thus making the right-hand sides 
of (49) and (50) equal to zero. The solution to the 
problem is then given by 

g=-9 =-SC”=- ’ c T 
R2 i-2 cash (Q) 

sinh @2x), 

where R = J(R,S,( I+ N)). S, should be computed 
from the reduced form of equation (42) which reads 

S‘? - ,+cofh(2R)(y-l)=0. 

Once the value of S,, and thereby Q is known, the 
Sherwood and Nusselt numbers can be calculated 
from 

L-2 
Sh = Nu = ~ 

tanh (a) 

which is the reduced version of (44) and (45). 
If one further assumes that the solution has boun- 

dary layer character, i.e. if Q > 3, the above equations 
lead to the following solution 

where Q = 2- ‘I’( 1+ N)2’SRz’5, 

and 
Sh = Nu = 2- “5(1 + N)2’5R,2’5, 

which agrees with the results by Trevisan and Bejan 
1’21. 

Before closing this subsection, the following com- 
ments may be in order. 

(i) From a practical point of view, the case of Le = 1 
has a very limited value since, at least to the knowledge 
of the present author, it is not possible to find a solute 
with exactly the same diffusivity as heat. 

(ii) The case of Le = 1 does not belong to the class 
of problems that are described as ‘double diffusive 
phenomena’. 

(iii) From a mathematical point of view, the treat- 
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ment of the Le = I case can, for the steady state (or, 
if CJ = E, even for the transient case), be substantially 
simplified by introducing an auxiliary function @ 
defined by @ = (O-N(p)/(l +N). The equation sys- 
tem (8)-( 14) can then be reformulated as 

u = -VP-R,(I +Np,e,., 

v-u=o, o~+“.vaw2~ 

- = 0 and 19 = 0 at 1~31 = A. 
e.1 

-- = - I and u = 0 at 1.~1 = 1 
?X 

@ = 0 and u = 0 at t = 0. 

This modified version of the problem represents buoy- 
ancy-driven natural convection due to the gradients of 
one single property, i.e. Q,. Numerical and analytical 
investigations of this problem are already available in 
the literature, see e.g. ret-s. [3] and [6]. 

As a concluding remark, it should be emphasized 
that the linear terms in (40) and (41) are the outcome 
of the double diffusive feature of the present study 
and excluding them from this analysis would seriously 
restrict the applicability and usefulness of the ana- 
lytical solution reported in this paper. 

5.2.3. Solute-ririw~ boundary ladler. upproximatr 
sohrtion. Under the assumptions that N << I, R,. >> I 
and RT small, which imply that the flow is solute- 
driven boundary layer type, one can derive an 
approximate solution to equations (42) and (43). 
Omitting the algebric details of the derivation, the 
approximate values of S, and S, read 

and 

and thus the corresponding approximate values of the 
Sherwood and Nusselt numbers become 

and 

Sh = 2- Iis@ 

Nu = 

The correction terms in the expressions for S, and Nu 
apply if R,. CC 0.25Le5. In view of the usually large 
value of Le, this condition is not inconveniently 
restrictive. 

Another interesting quantity here is the order of 
magnitude of the thickness of the hydrodynamic and 
concentration (vertical) boundary layers, which in 
view of the approximations of this subsection becomes 

1 

The temperature profile in this case is not of the 
boundary layer type. 

The approximate solution presented in this sub- 
section is in good agreement with the fully numerical 
calculations. This solution is, to the hightest order of 
magnitude, reconfirmed in Subsection 6.1 on scaling 
grounds. 

5.2.4. Heat-driven boundary layer approximate soltr- 
tion. In this subsection it is assumed that fluid flow is 
mainly due to the gradients of temperature, i.e. N >> I, 
R, x I and R, small. Under these circumstances, the 
approximate solution to equations (42) and (43) 
becomes 

S, = 2-“5Le- ‘R.; 1’5 and S.,. = 2m2:5R; ‘is, 

yielding the following approximate values for the 
Sherwood and Nusselt numbers 

s,? = 74/5,@5 and ,,fu = 2- lisR2’“. 7 

For the sake of brevity, algebraic details are omitted. 
Note that the Sherwood number depends on the 
thermal Rayleigh-Darcy number only. This does not 
agree with the similarity solution results by Trevisan 
and Bejan [ 121, according to which, in the heat-driven 
limit and for Le >> I 

provided that 4RT > I. 
The thickness of the hydrodynamic, concentration 

and temperature (vertical) boundary layers can then 
be estimated by 

The approximate solution given in this subsection, 
as in the previous one, agrees well with the fully 
numerical solution. In order to remove any doubts 
about the correctness of these results, they are recon- 
firmed in Subsection 6.2 by resorting to pure scale 
analysis. 

6. SCALE ANALYSIS 

In the general case, the contribution to the buoy- 
ancy forces of neither the gradients of temperature 
nor those of concentration can be neglected. Under 
such circumstances, the quantities of interest involved 
in the problem are related in so complicated a way 
that would not allow estimations of their orders of 
magnitudes by scale analysis. However, at steady 
state, for the two limiting cases of solute-driven and 
heat-driven boundary layer type natural convection, 
order of magnitude estimates can be derived on scaling 
grounds. This section is meant to confirm the approxi- 
mate solutions of Subsections 52.3 and 5.2.4 by scale 
analysis arguments and thus lend further support to 
both the numerical and analytical solutions that are 
presented in this paper. Throughout this section, it is 
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assumed that A >> 1, Le > I and that at least the 
velocity and the concentration fields have boundary 
layer character. It is moreover assumed that the con- 
centration and temperature fields are stably stratified 
in the vertical direction. The notations V‘, d and 9’ 
(Fig. l(b)) are used to denote the scales of vertical 
velocity, vertical boundary layer thickness and vertical 
length scales, respectively. 

6. I Solule-drir>en bourrdurJ~ layer lype nuturul 
conoection 

Suppose that the buoyancy forces that drive the 
fluid motion in the enclosure are mainly due to the 
gradients of solute concentration, i.e. N CC I. The con- 
centration variation over the thickness of the vertical 
boundary layers is then typlcally A”“c/. In view of the 
solutal stratification of the fluid, it is reasonable to 
assume that, in the vertical direction. the afore- 
mentioned variation of concentration takes place over 
an unknown vertical distance V,. The balance equa- 
tions to be satisfied by the three unknown scales Y . . 
J and 9,. are as follows 

momentum balance : 

p- - pg/M”‘A 

local balance of solute transport : 

~,~ A”” d A”‘J 
Y, D cf2 

global balance of solute transport : 

The last equation, which originates from the dimen- 
sional version of the integral condition (36), states that 
the vertical convective and diffusive net transports 
of solute should be comparable. Solving the balance 
equations for ,3‘, d and LYC one obtains 

a! - hR;“‘, “+- - ; ,;I5 and YC. - hR, ‘j5. 

The order of magnitude of the vertical gradient of 
concentration can now be deduced according to 

The temperature field in this case is advected by the 
flow field that the concentration gradients generate. 
The scale of temperature variations in the horizontal 
direction is assumed to be ACT’h, which is a conductive 
scale implying that the horizontal profile of tem- 
perature is not of boundary layer type. In the vertical 
direction, a temperature variation of order ACT’/2 
occurs over a vertical length scale LZ’~ 5’;4, can be 
obtained from the balance equation 

global balance of heat transport : 

2d 3 ‘A”“/1 - 
A(T)/7 

ZllC~, 
T  

which gives 

Y.,. - IlLeR,: “j. 

The order of magnitude of the vertical temperature 
gradient can now be estimated by 

The equation for the local balance of thermal 
energy m this case merely translates into the condition 
Le R, “’ > I that should be fulfilled to render the 
assumption AT - A”‘/! valid. 

As can be seen, the quantities d, &/al9 and ;Tjd~ 
derived here, arc in good agreement with their non- 
dimensional counterparts 6, .S,. and S, in Subsection 
5.2.3. 

6.2. Heal-driwn bourdq~ Iqwr type narural 
conaeciion 

In this subsection, the buoyancy forces are assumed 
to be mainly due to the gradients of temperature. A 
typical variation of temperature A”-‘A occurs here 
over a horizontal length scale d or a vertical length 
scale 9,. The balance equations for the temperature 
related unknown scales are 

momentum balance : 

local balance of heat transport : 

A’T’d A’ ‘I C/ 

fFr - KT d - 

global balance of heat transport: 

from which one obtains 

d - hR$‘, I‘_ !!R35 and Y, - hR, I”. 

The order of magnitude of the vertical gradient of 
temperature then becomes 

The scale analysis for the concentration field, which 
is being advected by the velocity field due to the ther- 
mal buoyancy forces, proves to be a matter of some 
complexity since it can offer different possibilities with 
different results. At this stage, two additional balance 
equations can be set up, one for the local and one for 
the global balance of solute transport. This means 
that one can estimate the orders of two unknown 
scales. It is also possible to use one of these equations 
to derive the expression for one unknown scale and 



2490 F. ALAVYOON 

the remaining equation to derive a validity condition. 
In the previous subsection, e.g., it was assumed that 
a conductive temperature scale A”‘/I, prevailed in 
both the vertical and horizontal directions and that 
the only temperature related unknown scale was the 
vertical length scale 9,. The global balance of heat 
transport provided the latter while the local balance 
was interpreted as a validity condition. A similar 
choice cannot be made in the present case since the 
horizontal profile of concentration in the heat-driven 
case, unlike its thermal counterpart in the solute- 
driven one, is not diffusive. This fact is clearly illus- 
trated by both the fully numerical and the analytical 
solutions. In order to go further from here, it is neces- 
sary to assume something about the kind of solution 
one is seeking to verify through order-of-magnitude 
scaling analysis. According to the fully numerical 
results, given in Section 7, depending on the aspect 
ratio A of the enclosure, two different patterns of 
solution can be observed for the concentration field : 
(i) the bulk fluid is rather homogeneous and the ver- 
tical boundary layers of concentration are thinner 
than those of the velocity and temperature fields, and 
(ii) the concentration field is stably stratified in the 
vertical direction and its vertical boundary layers are 
as thick as their thermal and hydrodynamic counter- 
parts. The latter pattern occurs for A >> I and will be 
the focus of attention during the rest of this sub- 
section. It is reasonable, and indeed proves to be 
the only appropriate alternative, to recognize the two 
unknown quantities AC,. and Y,, which represent the 
vertical concentration and length scales, respectively, 
as the scales that remain to be resolved. The variation 
of concentration across the vertical boundary layer is 
of order A”‘d. The balance equations for AC,. and Y, 
read 

local balance of solute transport : 

global balance of solute transport : 

~&‘-AC,, - 2hD $3 
‘ 

which in turn yield 

AC,. - A”‘hLe- *R- 2/5 7 and 9,. - hLe- ‘R; li5. 

The order of magnitude of the vertical gradient of 
concentration becomes 

ac AC; -w-w 
ay -z 

,,“‘Le- ‘R; I/5 

The quantities d, aclay and aTlay derived here 
compare well with 6, S, and ST, given in Subsection 
5.2.4. 

7. RESULTS AND DISCUSSIONS 

A large number of fully numerical computations 
has been carried out to investigate the transient and 
the steady-state behaviours of the problem considered 
here. Comparisons are made between numerical and 
analytical solutions for small values of time, in order 
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FIG. 3. Comparison between fully numerical (+) and ana- 
lytical (-) solutions for small I, 0 = E = 0.8, R, = 100, 
Le = 10, N = 1, y  = 0 and I = 0. I. (a) Velocity profile, 

(b) temperature profile and (c) concentration profile. 
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a b C 

FIG. 4. Evolution of the concentration field for A = 5, R, = 250, Lx = 25 and N = 0.5. (a) I = 0.05. 
-0.4~ 0 $0.4and AtY=O.l; (b) I =O.l, -0.5 < 0GO.5 and A0 =O.l; and (c) I = 5, -0.5 6 ego.5 

and A0 = 0. I. 0 decreases from the lower left corner to the upper right corner. 

FIG. 5. Evolution of the temperature field for A = 5, R, = 250, Le = 25 and N = 0.5. (a) t = 0.05, 
- 1.5 4 cp < 1.5 and Acp = 0.25; (b) I = 0.1, -2 Q cp Q 2 and Acp = 0.5; and (c) r = 5, -2.5 < cp < 2.5 

and Acp = 0.5. cp increases from the lower left corner to the upper right corner. 
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a b c 

FIG. 6. Evolution of the streamlines for A = 5. R, = 250, Le = 25 and N = 0.5. (a) I = 0.05. -45 $ I// < 0 
and At) = 5; (b) I = 0.1. -40<4bfO and At,h=5; and (c) r=5. -22.5<$<0 and A$=2.5. 

IL decreases inwards from the boundaries. 

to validate the numerical code. and for steady state, 
in order to verify the steady-state analytical solution. 
The results are plotted as contour lines and profiles 
of the computed quantities of interest. With a view to 
illustrate the crucial features and the domain of the 
validity of the steady-state analytical solution, a rep- 
resentative selection of the results is chosen and pre- 
sented in Figs. 3-16. 

The numerically determined profiles of velocity, 
temperature and concentration for small values of 
time are compared with their analytical counterparts 
in Figs. 3(a)-(c). For the case shown in these Figures, 
the agreement between the two solutions is good for 
t < 0.1 and satisfactory for f  = 0.1 while it gradually 
deteriorates for t > 0.1. This is due to the fact that, 
as time passes, the appearance of vertical gradients 
renders a solution of the form given in (18) invalid. 
The analytical solution is valid for values of f  that 
are smaller than the time interval needed for a fluid 
particle to travel from the top to the bottom of the 
enclosure, i.e. for t < T, where t - 2A/R,.(l +N) 
according to (l9), (22) and (23). 

The transient evolution of the concentration, tem- 
perature and velocity fields is illustrated in Figs. 4-6. 
Figures 4(a)-6(a) show that for small values of time, 
the transport phenomena are largely one dimensional 
and dominated by horizontal diffusion. Moreover, the 
end effects are shown to be confined to fairly small 
regions at the top and the bottom of the cell. Figures 
4(b)-6(b) show that after some time, vertical gradients 
of concentration and temperature appear in the fluid. 
Thus, the aforementioned fields, and thereby the den- 

sity field, tend towards a stable vertical stratification. 
This in turn is followed by a reduction in the mag- 
nitude of velocity throughout the fluid. The rest of 
the process can be characterized by a slow approach 
towards the steady state at which the concentration 
and temperature fields are stably and linearly stratified 
in the vertical direction, see Figs. 4(c)-6(c). These 
observations form the grounds on which the develop- 
ment of the analytical solution is based. As will be 
discussed later, this pattern of solution is observed if 
the aspect ratio is not small. The contour lines of 
concentration and temperature in Figs. 4(c) and 5(c), 
unlike their isosolutal and isothermal counterparts in 
refs. [3] and [6], are not horizontal in the core region. 
This phenomenon is special for double diffusive natu- 
ral convection and can be attributed to the difference 
in thermal and solutal diffusivities. 

The comparison between numerical and analytical 
solutions at steady state is shown in Figs. 7-10. The 
vertical profiles of concentration and temperature at 
.Y = 0 are given in Figs. 7(a) and (b). These Figures 
lend support to the assumption that at steady state, 
and for sufficiently high aspect ratios, the end effects 
are restricted to small regions around the top and 
bottom walls of the enclosure and that the core region 
is linearly stratified. These assumptions are used in 
the development of the analytical solution in Section 
5. One can also conclude from Figs. 7(a) and (b) that, 
for Le > 1, the horizontal layers at the top and bottom 
of the enclosure are thinner for the temperature field 
than for the concentration field. Extensive numerical 
calculations show that this conclusion applies regard- 
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e 

FIG. 7. Comparison between fully numerical (thin line) and 
analytical (thick line) solutions at steady state for A = 5, 
R, = 100, Le = 10, N = I, s = 0. (a) Temperature, and 

(b) concentration. 

less of whether the Row is solute-driven, solute- and 
heat-driven or heat-driven. 

In Figs. 8-10, numerical and analytical profiles of 
concentration, temperature and velocity at JJ = 0 are 
compared. The agreement between the two is shown 
to be good. In Fig. 8, fluid flow is mainly due to 
concentration variations, i.e. u - R,B, compare Figs. 
8(a) and (c). In Fig. 9, fluid flow is due to the combined 
effects of concentration and temperature variations. 
Finally, in Fig. 10, fluid flow is mainly due to tem- 
perature variations, i.e. v  - R,.Ncp, compare Figs. 
IO(b) and (c). The following rather interesting 
phenomena can be observed in these Figures : 

(i) I f  the flow is driven by solute concentration 
gradients (the component with low diffusivity), the 
horizontal profile of temperature (the component with 
high diffusivity) becomes a conductive profile without 
a boundary layer character, see Fig. 8(b). In the 
opposite case, i.e. when the component with high 
diffusivity drives the motion, the horizontal profile 
of the component with low diffusivity will have a 
boundary layer form, see Fig. IO(a). 

(ii) The profiles with boundary layer character have 

a 

b 

C 

FIG. 8. Comparison between fully numerical (+) and ana- 
lytical (-) solutions at steady state for A = IO, R, = 100, 
Le = 10, N = 0.01 (solute-driven natural convection), .V = 0. 

(a) Concentration, (b) temperature, and (c) velocity. 

the same boundary layer thicknesses, see e.g. Figs. 
8(a) and (c) or IO(a)-(c). (The solution in Fig. 9 has 
a weak boundary layer character.) This occurs despite 
the rather large value of the Lewis number. Moreover, 
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FIG. 9. Comparison between fully numerical (-I-) and ana- 
lytical (-) solutions at steady state for A = IO. R, = 100, 
Le = IO, N = I (solute- and heat-driven natural convection), 
y = 0. (a) Concentration, (b) temperature, and (c) velocity. 
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FIG. IO. Comparison between fully numerical (+) and ana- 
lytical (-) solutions at steady state for A = 10, R, = 100, 
Le = 10, N = 50 (heat-driven natural convection), y = 0. 

(a) Concentration, (b) temperature, and (c) velocity. 
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FIG. Il. Variation of the vertical boundary layer thickness 
with R, and N. 

the thickness of the boundary layers, much like its 
isosolutal or isothermal counterparts in refs. [4-61, 
does not vary in the vertical direction, see also Figs. 
4(c) and 6(c). 

Sh 

n 

NU 

(iii) For given values of R, and Le, the vertical 
boundary layer thickness first increases and then 
decreases as N gradually increases from the limit of 
solute-driven (N << I) to the limit of heat-driven 
(N >> 1) natural convection. This property is more 
clearly illustrated in Fig. 11, which also shows that 
for given values of Le and N, the boundary layer 
thickness decreases with increasing values of R,. It 
should be remarked that the latter occurs in the iso- 
thermal and isosolutal counterparts of the present 
study too and is therefore not a special feature of 
double diffusive convection. 

b 

In most engineering applications, where details of 
the solution are of less significance, the overall solute 
and heat transfer rate of the system under con- 
sideration is summarized by resorting to Sherwood 
and Nusselt numbers. In the present analysis, the 
influence of the various input parameters (R,., Le, N 
and A) on the overall behaviour of the system is 
illustrated by plotting graphs of S/t and Nu versus the 
input parameters, see Figs. 12 and 13. This approach 
makes it possible to present large amounts of data 
within reasonable space and at the same time satisfies 
interests of engineering applications. Figures 12(a)- 
(c) show how the overall solute and heat transfer 
properties of the system respond to increasing R,, Le 
and N respectively. The quantity R is plotted in the 
same graphs in order to show the transition to or from 
boundary layer type solution (Q > 3). Figure 12(a) 
shows that for small values of the solutal Rayleigh- 
Darcy number (R, - O.l), heat and solute transfer is 
dominated by diffusion. However, as R, increases, the 
effect of natural convection first enhances the solute 
(at R, - 1) and then heat transfer (at R, - 10) rate of 
the system. Figure 12(b) illustrates the influence of the 
Lewis number on the Sherwood and Nusselt numbers. 
According to Fig. 12(b), for given values of R, and N, 

R 

Nu 

10 C 

a01 .Ol .I N 1 IO 100 

FIG. 12. Comparison between fully numerical (0 : Sherwood 
number and 0 : Nusselt number) and analytical solutions 
(-) at steady state and for A = IO. Influence of (a) solutal 
Rayleigh-Darcy number R,, (b) Lewis number Le. and 

(c) inverse of buoyancy ratio N. 

increasing Le leads to a steady decrease of Nu towards 
the conductive regime while Sh first increases and then 
decreases asymptotically towards a constant value. 
Figure 12(b) also shows that an increase in the Lewis 
number is followed by an increase in the boundary 
layer thickness (a - l/Q). Figure 12(c) shows that the 

10 Rc=lM)andN=0.4 !  
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83 Rc = 100. Le = IO and N = 0.1 
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FIG. 13. Comparison between fully numerical (0 : Sherwood 
number and q : Nusselt number) and analytical solutions 
(---) at steady state. Influence of the aspect ratio on 
(a) solute-driven flow, (b) solute- and heat-driven flow, and 

(c) heat-driven flow. 

Sherwood and Nusselt numbers increase steadily as 
N increases. Moreover, it shows that in the solute- 
driven limit, heat transfer is diffusion-dominated and 
not enhanced by fluid motion while in the heat-driven 
limit, solute transfer is significantly increased. Note 
that according to Fig. 12(c), and as predicted by the 
approximate solutions of Subsections 5.2.3 and 52.4, 

the quantity R coincides with the Sherwood number, 
in the solute-driven limit, and with the Nusselt 
number, in the heat-transfer limit, respectively. 

As already mentioned, the analytical solution is 
valid if the end effects are confined to small regions 
adjacent to the top and bottom of the cell. In other 
words, the enclosure should be tall. The influence of 
the aspect ratio on the Sherwood and Nusselt numbers 
is illustrated in Figs. 13(a)-(c). In these Figures, the 
analytical and numerical solutions are compared for 
the solute-driven, solute- and heat-driven and heat- 
driven cases. In the latter case, comparison is also 
made with the analytical prediction of Sherwood 
number based on a similarity solution proposed by 
Trevisan and Bejan [12], see Fig. 13(c). The Figures 
indicate that the agreement between the analytical 
solution proposed in this paper and the numerical 
solution improves as the aspect ratio increases. This 
can be attributed to three interrelated effects which 
are brought about by increasing A: (i) shrinking of 
the end regions relative to the total height of the 
enclosure, (ii) evolution of the concentration and tem- 
perature fields towards the case of linearly stratified 
fields and (iii) increasing parallelity of the vertical 
portions of the streamlines. These three effects are 
better illustrated in Figs. 14-16, which depict the case 
of comparable thermal and solutal buoyancy forces. 
Note that according to Fig. 14(a), for A = I, the 
concentration field is rather uniform in the central 
parts of the enclosure while it becomes more and more 
stratified as A increases, see Figs. 14(b) and (c). In 
the heat-driven limit of convection, the pattern of 
isosolutes, isotherms and streamlines are qualitatively 
similar to those of the combined solute- and heat- 
driven case shown in Figs. 14 and IS. However, in 
the solute-driven limit, the concentration and tem- 
perature fields both are almost linearly, though 
weakly, stratified even for A = I. It is worth remark- 
ing that according to Figs. 14(b) and (c), 15(b) and 
(c) and 16(b) and (c), which have a weak boundary 
layer character, the thicknesses of the vertical boun- 
dary layers of concentration, temperature and velocity 
are approximately the same despite the large value of 
Le. For sufficiently high aspect ratios, the same 
remark can be made in the solute-driven and heat- 
driven limits. According to Trevisan and Bejan [ 121, in 
the limit of large Lewis numbers : (i) the concentration 
boundary layer should be much thinner than the vel- 
ocity boundary layer and (ii) the core of the con- 
centration field should be in a state of almost uniform 
concentration. However, the results of the present 
analysis show that these properties prevail only in 
the solute- and heat-driven, and heat-driven regimes 
provided that the aspect ratio is not large. It should 
be added that numerical experiments indicate that 
the minimum aspect ratio, for and beyond which the 
analytical solution of Section 5 accurately predicts the 
corresponding fully numerical solution, increases with 
increasing the Lewis number. 

Last, but not least, the good agreement between the 
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a b C 

FIG. 14. Influence of increasing the enclosure height (or aspect ratio) on the pattern of isohalines for 
R, = 100, Le = IO, N = I. (a) A = I. -0.3 S 0 < 0.3 and AU = 0.05: (b) A = 2, -0.4 < 0 < 0.4 and 
A0 = 0.05 ; and (c) A = 4, -0.55 < 0 Q 0.55 and AU = 0.05. 0 decreases from the lower left corner to the 

upper right corner 

a b C 

FIG. 15. Influence of increasing the enclosure height (or aspect ratio) on the pattern of isotherms for 
R, = 100, Le = 10, N = I. (a) A = I, -I Qq< I and A.cp=O.l; (b) A=2, -1.4<cp< 1.4 and 
Acp = 0.2; and (c) A = 4, -2.2 < cp < 2.2 and Aq = 0.2. cp increases from the lower left corner to the 

upper right corner. 
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a b C 

FIG. 16. Influence of increasing the enclosure height (or aspect ratio) on the pattern of streamlines for 
R. = 100. .& = IO. N = I. (a) A = I, - I4 < $ $0 and A$ = I ; (b) A = 2, - I6 Q II/ < 0 and A$ = 1; 

and(c)A=4,-1.5C$<OandA$=l $ decreases inwards from the boundaries. 

time-consuming numerical solutions and their cor- 

responding analytical solutions, plotted in Figs. 7-10 
and 12, proves that the analytical solution presented 

in Section 5, despite its relative simplicity, is a power- 

ful tool of analysis. 

Atk,?o,,/eclge,nenrs-The author wishes to thank Dr Shigeo 
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discussions and good comments on the manuscript. 
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